

MOTIVATION

Meta-analyses of randomized controlled trials (RCTs) provide robust estimates of treatment efficacy and require extraction of data elements from individual articles for synthesis

- Can we fully automate "on-demand" meta-analysis of evidence relevant to a given clinical question?
- Are modern LLMs sufficiently capable of *numerical* data extraction to permit accurate, fully automated metaanalysis?

DATA ANNOTATION

- Intervention, Comparator, & Outcome (ICOs) from PubMed RCT reports
- Annotations based on Abstract + Results sections of RCT
- Schema:
- **Type of outcome:** binary or continuous
- *Binary outcome*: events, group sizes for I & C
- Continuous outcome: means, standard deviations, group sizes for I & C

Example	e Annota	tion for Gi	Intervention	Comparator	Outcome	
				Hypnotherapy	Relaxation	Smoking
	Outcome Type	Intervention Events	Intervention Group Size	Comparator Events	Comparator Group Size	
	Binary	19	116	17	117	

Metric	Dev	Test	Total
# PMC Articles	10	110	120
# Prompts (ICOs)	43	656	699
# Binary Outcomes	11	172	183
# Continuous Outcomes	32	484	516
% With Enough Data for Point Estimates	62.79	58.84	59.08
Mean Articles Tokens	3331	3603	3581

SUMMARY

- **Annotated dataset** for the task of extracting numerical clinical findings for conducting meta-analysis
- **Evaluation** of 8 modern LLMs using the annotated dataset
- End-to-end case study of a fully automated meta-analysis
- Binary outcomes extraction: LLMs with large input context windows (e.x. GPT-4) outperform smaller, open-source models
- Continuous outcomes extraction: LLMs perform poorly (<50%) exact match)

131 Automatically Extracting Numerical Results from Randomized Controlled Trials with LLMs Hye Sun Yun, David Pogrebitskiy, Iain J Marshall, Byron C Wallace

{yun.hy, pogrebitskiy.d, b.wallace}@northeastern.edu, {iain.marshall}@kcl.ac.uk

Part 1: Outcome Type

	GPT-4	GPT-3.5	Alpaca	Mistral	Gemma	OLMo	PMC LLaMA	BioMistral
Accuracy	0.713	0.607	0.739	0.201	0.665	0.290	0.732	0.133
F1 - Binary F1 - Continuous	0.735 0.836	$0.680 \\ 0.690$	0.000 0.851	$0.576 \\ 0.183$	$0.590 \\ 0.716$	$0.424 \\ 0.079$	$0.124 \\ 0.848$	$0.275 \\ 0.135$
# Unknowns	155	152	1	489	0	5	15	409

Part 2a: Binary Outcome Numerical Results Extraction

		GPT-4	GPT-3.5	Alpaca	Mistral	Gemma	OLMo	PMC LLaMA	BioMistral
	Total	0.655	0.298	0.035	0.164	0.135	0.012	0.035	0.035
	IE	0.749	0.462	0.129	0.345	0.275	0.076	0.146	0.158
Exact Match	IGS	0.842	0.655	0.094	0.515	0.509	0.170	0.088	0.053
	CE	0.737	0.392	0.129	0.333	0.275	0.123	0.158	0.158
	CGS	0.830	0.649	0.094	0.567	0.556	0.140	0.058	0.053
MSE		0.101	0.441	0.485	0.657	0.913	1.253	1.523	-
# Unknowns		41	145	490	28	90	319	524	612
% Complete		87.94	61.70	9.22	87.23	58.87	24.11	7.09	0.00

Part 2b: Continuous Outcome Numerical Results Extraction

		GPT-4	GPT-3.5	Alpaca	Mistral	Gemma	OLMo	PMC LLaMA	$\operatorname{BioMistral}$
	Total	0.487	0.280	0.039	0.095	0.087	0.035	0.039	0.041
	IM	0.720	0.538	0.309	0.348	0.328	0.221	0.369	0.390
	ISD	0.751	0.606	0.334	0.375	0.412	0.311	0.447	0.470
Exact Match	IGS	0.734	0.641	0.216	0.507	0.534	0.190	0.107	0.087
	CM	0.720	0.526	0.330	0.361	0.324	0.227	0.390	0.402
	CSD	0.738	0.584	0.338	0.390	0.404	0.282	0.456	0.472
	CGS	0.691	0.608	0.181	0.427	0.447	0.184	0.109	0.087
MSE		0.290	0.951	6.257	1.138	3.466	1.738	-	-
# Unknov	vns	422	437	1169	483	775	1213	1778	1985
% Complete		63.64	62.40	31.82	62.81	40.08	11.98	4.96	0.00

APPROACH

- Evaluated 8 LLMs on predicting outcome type and extracting binary and continuous outcomes in YAML format using **zero-shot approach**
- for meta-analysis

RESULTS

Case Study: Remdesivir for treatment of COVID-19

	Remde	sivir	Cont	rol		
Study	Events	Total	Events	Total	V	
WHO STC, 2021	285	2743	289	2708		
Spinner, 2020	3	193	4	200		
Beigel, 2020	59	541	77	521		
Wang, 2020	22	158	10	78		
Total (95% CI)	369	3635	380	3507	1	

	Remde	sivir	Cont	rol	
Study	Events	Total	Events	Total	
WHO STC, 2021	301	2743	303	2708	
Spinner, 2020	5	396	4	200	
Beigel, 2020	59	541	77	521	
Wang, 2020	22	158	10	78	
Total (95% CI)	387	3838	394	3507	

	Remde	sivir	Cont	rol	
Study	Events	Total	Events	Total	
WHO STC, 2021	301	2743	303	2708	
Spinner, 2020	2	197	4	200	
Beigel, 2020	59	541	77	521	
Wang, 2020	22	158	10	78	
Total (95% CI)	384	3639	394	3507	

• Python's statsmodels package for deriving point estimates and standard errors

(A) Cochrane meta-analysis (reference)

(B) meta-analysis from GPT-4 outputs

Weight Odds Ratio [95% CI]

Odds ratio, 95% CI

(C) meta-analysis from Mistral Instruct 7B outputs